4.2 Article

MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2

期刊

HUMAN CELL
卷 33, 期 3, 页码 641-651

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s13577-020-00329-7

关键词

Esophageal squamous cell carcinoma; MiR-27b-3p; Nrf2; Epithelial to mesenchymal transition

资金

  1. Natural science foundation of xinjiang uygur autonomous region [2017D01C413]

向作者/读者索取更多资源

MiR-27b-3p has been reported to function as tumor suppressor in several tumors, including breast cancer and lung cancer. Recently, miR-27b-3p has been identified to be significantly down-regulated in esophageal cancer. However, the clinical significance and biological role of miR-27b-3p in esophageal squamous cell carcinoma (ESCC) still remain unclear. In this study, the expression levels of miR-27b-3p were significantly reduced in ESCC clinical tissues and ESCC cell lines (EC97069 and TE-1). Moreover, down-regulated expression of miR-27b-3p was associated with poor cell differentiation, TNM stage and lymph node metastasis. Specially, overexpression of miR-27b-3p significantly suppressed cell proliferation, migration and invasion in vitro using CCK-8 and transwell assays. Targetscan bioinformatics predictions and luciferase reporter assay confirmed that nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) was a direct target gene of miR-27b-3p. Nrf2 expression was significantly increased in ESCC tissues compared with adjacent tissues. Up-regulated expression of Nrf2 was correlated with TNM stage and lymph node metastasis. Functionally, knockdown of Nrf2 exhibited similar effects to overexpression of miR-27b-3p. Higher expression of ZO-1, E-cadherin and lower expression of N-cadherin, Vimentin and Claudin-1 were observed after miR-27b-3p overexpression of Nrf2 knockdown. Rescue experiments proved that miR-27b-3p suppressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) via suppression of Nrf2. Taken together, the newly identified miR-27b-3p/Nrf2 axis might represent a new candidate therapeutic target for ESCC treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据