4.6 Article

Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers

期刊

BIOMEDICAL OPTICS EXPRESS
卷 11, 期 7, 页码 3555-3566

出版社

OPTICAL SOC AMER
DOI: 10.1364/BOE.392901

关键词

-

资金

  1. Indian Institute of Technology Madras

向作者/读者索取更多资源

3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping a perfectly spherical object at two locations and subsequent pitch rotation hasn't yet been demonstrated to be possible. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 mu m which is smaller than those reported using acousto-fluidic techniques. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据