4.8 Article

Multiscale Understanding and Architecture Design of High Energy/Power Lithium-Ion Battery Electrodes

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202000808

关键词

architecture designs; high power; energy; lithium-ion batteries; multiscale; transport kinetics

资金

  1. Center for Mesoscale Transport Properties, an Energy Frontier Research Center - DOE-BES [DE-SC0012673]

向作者/读者索取更多资源

This passage introduces lithium-ion batteries as one of the most compact and rapidly growing energy storage devices, with good performance in reversible storage and release of electricity. With the rapid electrification of transportation and the penetration of renewable energy, the demand for high energy and high power batteries is continuously increasing, thus further research on the transport dynamics in batteries is needed.
Among various commercially available energy storage devices, lithium-ion batteries (LIBs) stand out as the most compact and rapidly growing technology. This multicomponent system operates on coupled dynamics to reversibly store and release electricity. With the hierarchical electrode architectures inside LIBs, versatile functionality can be realized by design, while considerable difficulties remain to be solved to fully exploit the capability of each constituent. With the rapid electrification of the transportation sector and an urgent need to overhaul electric grids in the context of renewable energy penetration, demands for concomitant high energy and high power batteries are continuously increasing. Although building an ideal battery requires effort from multiple scientific and engineering aspects, it is imperative to gain insight into multiscale transport behaviors arising in both spatial and temporal dimensions, and enable their harmonic integration inside the whole battery system. In this progress report, recent research efforts on characterizing and understanding transport kinetics in LIBs are reviewed covering a broad range of electrode materials and length scales. To demonstrate the crucial role of such information in revolutionary electrode design, examples of innovative high energy/power electrodes are provided with their unique hierarchical porous architectures highlighted. To conclude, perspectives on further approaches toward advanced thick electrode designs with fast kinetics and tailored properties are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据