4.8 Article

Revisiting the Role of Conductivity and Polarity of Host Materials for Long-Life Lithium-Sulfur Battery

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201903934

关键词

cycle stability; lithium-sulfur batteries; mesoporous silica; polarity; sulfur hosts

资金

  1. National Research Foundation - Korea Ministry of Science, ICT & Future Planning [NRF-2016M1A2A2937137, NRF-2019R1A2C2086770]
  2. U.S. Department of Energy (DOE) [DE-AC02-06CH11357]
  3. U.S. DOE's Office of Vehicle Technologies Program

向作者/读者索取更多资源

Despite their high theoretical energy density and low cost, lithium-sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long-life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long-term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm(-2) illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long-life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long-life and highly efficient LSBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据