4.8 Review

High-Performance GeTe-Based Thermoelectrics: from Materials to Devices

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202000367

关键词

GeTe; phase transition; thermoelectric performance

资金

  1. National Science Foundation of China [51001166]
  2. Key Laboratory of MaterialsOriented Chemical Engineering [38901206]
  3. Nanjing Tech University [39801154]
  4. Australian Research Council
  5. USQ

向作者/读者索取更多资源

High-performance GeTe-based thermoelectrics have been recently attracting growing research interest. Here, an overview is presented of the structural and electronic band characteristics of GeTe. Intrinsically, compared to low-temperature rhombohedral GeTe, the high-symmetry and high-temperature cubic GeTe has a low energy offset between L and sigma points of the valence band, the reduced direct bandgap and phonon group velocity, and as a result, high thermoelectric performance. Moreover, their thermoelectric performance can be effectively enhanced through either carrier concentration optimization, band structure engineering (bandgap reduction, band degeneracy, and resonant state engineering), or restrained lattice thermal conductivity (phonon velocity reduction or phonon scattering). Consequently, the dimensionless figure of merit, ZT values, of GeTe-based thermoelectric materials can be higher than 2. The mechanical and thermal stabilities of GeTe-based thermoelectrics are highlighted, and it is found that they are suitable for practical thermoelectric applications except for their high cost. Finally, it is recognized that the performance of GeTe-based materials can be further enhanced through synergistic effects. Additionally, proper material selection and module design can further boost the energy conversion efficiency of GeTe-based thermoelectrics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据