4.8 Article

High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15358-x

关键词

-

资金

  1. Research Grants Council of Hong Kong [24208915, 14208717, 14206318]
  2. NSFC/RGC Joint Research Scheme - Research Grants Council of Hong Kong [N_CUHK415/15]
  3. NSFC/RGC Joint Research Scheme - National Natural Science Foundation of China [N_CUHK415/15]

向作者/读者索取更多资源

Photonic bound states in the continuum (BICs) have been exploited in various systems and found numerous applications. Here, we investigate high-order BICs and apply BICs on an integrated photonic platform to high-dimensional optical communication. A four-channel TM mode (de)multiplexer using different orders of BICs on an etchless lithium niobate (LiNbO3) platform where waveguides are constructed by a low-refractive-index material on a high-refractive-index substrate is demonstrated. Low propagation loss of the TM modes in different orders and phase-matching conditions for efficient excitation of the high-order TM modes are simultaneously achieved. A chip consisting of four-channel mode (de)multiplexers was fabricated and measured with data transmission at 40Gbps/channel. All the channels have insertion loss <4.0dB and crosstalk <-9.5dB in a 70-nm wavelength band. Therefore, the demonstrated mode (de)multiplexing and high-dimensional communication on LiNbO3 platform can meet the increasing demand for high capacity in on-chip optical communication. Here, the authors investigate high-order bound states in the continuum and apply them on an integrated photonic platform for high-dimensional optical communication. The demonstrated mode (de)multiplexing and high-dimensional communication can enhance the data capacity with low insertion loss and crosstalk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据