4.8 Article

Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16405-3

关键词

-

资金

  1. Natural Science Foundation of China [21633005, 21790354, 21711530704]
  2. Ministry of Science and Technology of China [2016YFA0200601]

向作者/读者索取更多资源

Underpotential deposition offers a predominant way to tailor the electronic structure of the catalytic surface at the atomic level, which is key to engineering materials with a high activity for (electro)catalysis. However, it remains challenging to precisely control and directly probe the underpotential deposition of a (sub)monolayer of atoms on nanoparticle surfaces. In this work, we in situ observe silver electrodeposited on gold nanocrystals surface from sub-monolayer to one monolayer by designing a highly sensitive electrochemical dark field scattering setup. The spectral variation is used to reconstruct the optical cyclic voltammogram of every single nanocrystal for understanding the underpotential deposition process on nanocrystals, which cannot be achieved by any other methods but are essential for creating novel nanomaterials. Underpotential deposition (UPD) is important to modify the surface properties of nanocrystals. Here, the authors show the application of in situ electrochemical dark field spectroscopy in identifying the UPD processes of silver on different facets of gold nanocrystals at the single nanoparticle level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据