4.8 Article

Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14957-y

关键词

-

资金

  1. Practical Research Project for Rare/Intractable Diseases by AMED [JP19ek0109293]
  2. T-CiRA Join Research by Takeda Pharmaceutical Company
  3. Core Center for iPS Cell Research by AMED [JP19bm0104001]
  4. Acceleration Program for Intractable Diseases Research utilizing disease-specific iPS cells by AMED [JP19bm0804005]
  5. NCNP
  6. JSPS [17K15048]
  7. fellowship program for the Promotion of Internationalization of Research (CiRA, Kyoto University)
  8. Grants-in-Aid for Scientific Research [17K15048] Funding Source: KAKEN

向作者/读者索取更多资源

Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据