4.8 Article

Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16085-z

关键词

-

资金

  1. City University of Hong Kong [9380088, 7005078, 9380092]
  2. CityU grant [9360161]
  3. GRF grant [C1027-14E]

向作者/读者索取更多资源

Alloys with ultra-high strength and sufficient ductility are highly desired for modern engineering applications but difficult to develop. Here we report that, by a careful controlling alloy composition, thermomechanical process, and microstructural feature, a Co-Cr-Ni-based medium-entropy alloy (MEA) with a dual heterogeneous structure of both matrix and precipitates can be designed to provide an ultra-high tensile strength of 2.2GPa and uniform elongation of 13% at ambient temperature, properties that are much improved over their counterparts without the heterogeneous structure. Electron microscopy characterizations reveal that the dual heterogeneous structures are composed of a heterogeneous matrix with both coarse grains (10 similar to 30 mu m) and ultra-fine grains (0.5 similar to 2 mu m), together with heterogeneous L1(2)-structured nanoprecipitates ranging from several to hundreds of nanometers. The heterogeneous L1(2) nanoprecipitates are fully coherent with the matrix, minimizing the elastic misfit strain of interfaces, relieving the stress concentration during deformation, and playing an active role in enhanced ductility. Improving both strength and ductility simultaneously in structural metals and alloys remains a challenge. Here, the authors design a heterogeneous structure in a Co-Cr-Ni alloy that results in ultrahigh strength and significant uniform elongation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据