4.8 Article

The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15673-3

关键词

-

向作者/读者索取更多资源

The marine phosphorus cycle plays a critical role in controlling the extent of global primary productivity and thus atmospheric pO(2) on geologic time scales. However, previous attempts to model carbon-phosphorus-oxygen feedbacks have neglected key parameters that could shape the global P cycle. Here we present new diagenetic models to fully parameterize marine P burial. We have also coupled this diagenetic framework to a global carbon cycle model. We find that seawater calcium concentration, by strongly influencing carbonate fluorapatite (CFA) formation, is a key factor controlling global phosphorus cycling, and therefore plays a critical role in shaping the global oxygen cycle. A compilation of Cenozoic deep-sea sedimentary phosphorus speciation data provides empirical support for the idea that CFA formation is strongly influenced by marine Ca concentrations. Therefore, we propose a previously overlooked coupling between Phanerozoic tectonic cycles, the major-element composition of seawater, the marine phosphorus cycle, and atmospheric pO(2). Previous work suggests that marine oxygen levels and bioturbation are important factors that shape phosphorus burial and the size of the marine biosphere. Here the authors show that seawater calcium concentration is a key factor in controlling marine P burial, and thus the global oxygen cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据