4.8 Article

Mechanoradicals in tensed tendon collagen as a source of oxidative stress

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-15567-4

关键词

-

资金

  1. Klaus Tschira Foundation
  2. Volkswagen Foundation
  3. Excellence Cluster Cellnetworks
  4. BIOMS of Heidelberg University
  5. state of Baden-Wurttemberg through bwHPC
  6. German Research Foundation (DFG) [INST 35/1134-1 FUGG]

向作者/读者索取更多资源

As established nearly a century ago, mechanoradicals originate from homolytic bond scission in polymers. The existence, nature and biological relevance of mechanoradicals in proteins, instead, are unknown. We here show that mechanical stress on collagen produces radicals and subsequently reactive oxygen species, essential biological signaling molecules. Electron-paramagnetic resonance (EPR) spectroscopy of stretched rat tail tendon, atomistic molecular dynamics simulations and quantum-chemical calculations show that the radicals form by bond scission in the direct vicinity of crosslinks in collagen. Radicals migrate to adjacent clusters of aromatic residues and stabilize on oxidized tyrosyl radicals, giving rise to a distinct EPR spectrum consistent with a stable dihydroxyphenylalanine (DOPA) radical. The protein mechanoradicals, as a yet undiscovered source of oxidative stress, finally convert into hydrogen peroxide. Our study suggests collagen I to have evolved as a radical sponge against mechano-oxidative damage and proposes a mechanism for exercise-induced oxidative stress and redox-mediated pathophysiological processes. The existence, nature and biological relevance of mechanoradicals in proteins are unknown. Here authors show that mechanical stress on collagen produces radicals and subsequently reactive oxygen species and suggest that collagen I evolved as a radical sponge against mechano-oxidative damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据