4.8 Article

Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15858-w

关键词

-

资金

  1. German Research Foundation (DFG) through the Konstanz Research School Chemical Biology (KoRS-CB) [GSC 218]
  2. Collaborative Research Centers 969 [CRC969, 1214]
  3. Zukunftskolleg of the University of Konstanz
  4. University of Konstanz
  5. [MA4905/4-1]

向作者/读者索取更多资源

Poly-ADP-ribosylation (PARylation) is a fully reversible post-translational modification with key roles in cellular physiology. Due to the multi-domain structure of poly(ADP-ribose) polymerase-1 (PARP1) and the highly dynamic nature of the PARylation reaction, studies on the biochemical mechanism and structural dynamics remain challenging. Here, we report label-free, time-resolved monitoring of PARP1-dependent PARylation using ATR-FTIR spectroscopy. This includes PARP1 activation by binding to DNA strand break models, NAD(+) substrate binding, PAR formation, and dissociation of automodified PARP1 from DNA. Analyses of PARP1 activation at different DNA models demonstrate a strong positive correlation of PARylation and PARP1 dissociation, with the strongest effects observed for DNA nicks and 3' phosphorylated ends. Moreover, by examining dynamic structural changes of PARP1, we reveal changes in the secondary structure of PARP1 induced by NAD(+) and PARP inhibitor binding. In summary, this approach enables holistic and dynamic insights into PARP1-dependent PARylation with molecular and temporal resolution. The mechanism of PARP1-dependent poly-ADP-ribosylation in response to DNA damage is still under debate. Here, the authors use ATR-FTIR spectroscopy to provide time-resolved insights into the molecular details of this process under near physiological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据