4.8 Article

Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15896-4

关键词

-

资金

  1. JSPS [26221106]
  2. JST CREST [JPMJCR15O1]
  3. Plant Transgenic Design Initiative, Gene Research Center, T-PIRC, University of Tsukuba
  4. Grants-in-Aid for Scientific Research [26221106] Funding Source: KAKEN

向作者/读者索取更多资源

Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsishalleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据