4.8 Article

Transcription-coupled repair and mismatch repair contribute towards preserving genome integrity at mononucleotide repeat tracts

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-15901-w

关键词

-

资金

  1. CRUK Advanced Clinician Scientist Award [C60100/A23916]
  2. CRUK Grand Challenge Award [C60100/A25274]
  3. Swiss National Science Foundation [31003B-170267]
  4. Wellcome Trust Sanger Institute

向作者/读者索取更多资源

The mechanisms that underpin how insertions or deletions (indels) become fixed in DNA have primarily been ascribed to replication-related and/or double-strand break (DSB)-related processes. Here, we introduce a method to evaluate indels, orientating them relative to gene transcription. In so doing, we reveal a number of surprising findings: First, there is a transcriptional strand asymmetry in the distribution of mononucleotide repeat tracts in the reference human genome. Second, there is a strong transcriptional strand asymmetry of indels across 2,575 whole genome sequenced human cancers. We suggest that this is due to the activity of transcription-coupled nucleotide excision repair (TC-NER). Furthermore, TC-NER interacts with mismatch repair (MMR) under physiological conditions to produce strand bias. Finally, we show how insertions and deletions differ in their dependencies on these repair pathways. Our analytical approach reveals insights into the contribution of DNA repair towards indel mutagenesis in human cells. Indels that are commonly found in cancer genomes are characterized by non-random sequence composition and localisation. Here, the authors described a method to investigate transcriptional strand asymmetries and sequence-context specific mechanisms that alter the likelihood of insertions and deletions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据