4.8 Article

Automatic diagnosis of the 12-lead ECG using a deep neural network

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-15432-4

关键词

-

资金

  1. CNPq
  2. CAPES
  3. FAPEMIG
  4. Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation
  5. Google Latin America Research Award scholarships
  6. Uppsala University
  7. project IATS
  8. project MASWeb
  9. project INCT-Cyber
  10. project Rede de Teleassistencia de Minas Gerais and Atmosphere
  11. NVIDIA

向作者/读者索取更多资源

The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据