4.7 Article

Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer

期刊

CELL DEATH & DISEASE
卷 11, 期 4, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-020-2442-z

关键词

-

资金

  1. Albany Medical College
  2. AACR Gertrude B. Elion Cancer Research Award [17-10-19-CHEO]
  3. Caring Together Research Fund
  4. National Cancer Institute grant [R01CA208753]
  5. Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer Research Program [W81XWH-17-1-0144, W81XWH-16-1-0190]
  6. Ovarian Cancer Research Alliance Program Project Grant
  7. Ovarian Cancer Research Alliance Ann and Sol Schreiber Mentored Investigator Award

向作者/读者索取更多资源

Collagen type XI alpha 1 (COL11A1) is a novel biomarker associated with cisplatin resistance in ovarian cancer. However, the mechanisms underlying how COL11A1 confers cisplatin resistance in ovarian cancer are poorly understood. We identified that fatty acid beta-oxidation (FAO) is upregulated by COL11A1 in ovarian cancer cells and that COL11A1-driven cisplatin resistance can be abrogated by inhibition of FAO. Furthermore, our results demonstrate that COL11A1 also enhances the expression of proteins involved in fatty acid synthesis. Interestingly, COL11A1-induced upregulation of fatty acid synthesis and FAO is modulated by the same signaling molecules. We identified that binding of COL11A1 to its receptors, alpha 1 beta 1 integrin and discoidin domain receptor 2 (DDR2), activates Src-Akt-AMPK signaling to increase the expression of both fatty acid synthesis and oxidation enzymes, although DDR2 seems to be the predominant receptor. Inhibition of fatty acid synthesis downregulates FAO despite the presence of COL11A1, suggesting that fatty acid synthesis might be a driver of FAO in ovarian cancer cells. Taken together, our results suggest that COL11A1 upregulates fatty acid metabolism in ovarian cancer cells in a DDR2-Src-Akt-AMPK dependent manner. Therefore, we propose that blocking FAO might serve as a promising therapeutic target to treat ovarian cancer, particularly cisplatin-resistant recurrent ovarian cancers which typically express high levels of COL11A1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据