4.7 Article

Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pill and S-Layer Glycosylation Patterns

期刊

MBIO
卷 11, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.03014-19

关键词

type IV pili; archaea; Sulfolobus; DNA exchange; glycosylation; species-specific recognition

资金

  1. National Institutes of Health [1S10OD018530, P41GM10349010]
  2. German Academy of Sciences Leopoldina
  3. Deutsche Forschungsgemeinschaft (German Research Foundation) [403222702-SFB 1381]
  4. Momentum grant from the VW Stiftung grant [94933]

向作者/读者索取更多资源

The UV-inducible pill system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. addocaldarius. Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination. IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pill system of Sulfolobales (Ups) pill from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据