4.2 Article

Selected applications of typicality to real-time dynamics of quantum many-body systems

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/ZNA-2020-0010

关键词

low-dimensional lattice models; numerical simulation; quantum many-body dynamics; quantum typicality; transport and thermalization

资金

  1. Deutsche Forschungsgemeinschaft (DFG) within the DFG Research Unit FOR 2692 [397067869 (STE 2243/3-1), 355031190]

向作者/读者索取更多资源

Loosely speaking, the concept of quantum typicality refers to the fact that a single pure state can imitate the full statistical ensemble. This fact has given rise to a rather simple but remarkably useful numerical approach to simulate the dynamics of quantum many-body systems, called dynamical quantum typicality (DQT). In this paper, we give a brief overview of selected applications of DQT, where particular emphasis is given to questions on transport and thermalization in low-dimensional lattice systems like chains or ladders of interacting spins or fermions. For these systems, we discuss that DQT provides an efficient means to obtain time-dependent equilibrium correlation functions for comparatively large Hilbert-space dimensions and long time scales, allowing the quantitative extraction of transport coefficients within the framework of, e. g., linear response theory (LRT). Furthermore, it is discussed that DQT can also be used to study the far-from-equilibrium dynamics resulting from sudden quench scenarios, where the initial state is a thermal Gibbs state of the pre-quench Hamiltonian. Eventually, we summarize a few combinations of DQT with other approaches such as numerical linked cluster expansions or projection operator techniques. In this way, we demonstrate the versatility of DQT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据