4.8 Article

Degradation of contaminants of emerging concern by UV/H2O2 for water reuse: Kinetics, mechanisms, and cytotoxicity analysis

期刊

WATER RESEARCH
卷 174, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115587

关键词

UV/H2O2 AOP; Water reuse; Transformation products; Cytotoxicity; Contaminants of emerging concern

资金

  1. U.S. Geological Survey (USGS)-Water Resources Research Institute (WRRI) [2015SC101G]
  2. China Scholarship Council (CSC) [201306270057]
  3. CSC scholarship [201608110134]

向作者/读者索取更多资源

Advanced oxidation using UV and hydrogen peroxide (UV/H2O2) has been widely applied to degrade contaminants of emerging concern (CECs) in wastewater for water reuse. This study investigated the degradation kinetics of mixed CECs by UV/H2O2 under variable H2O2 doses, including bisphenol A, estrone, diclofenac, ibuprofen, and triclosan. Reverse osmosis (RO) treated water samples from Orange County Water District's Groundwater Replenishment System (GWRS) potable reuse project were collected on different dates and utilized as reaction matrices with spiked additions of chemicals (CECs and H2O2) to assess the application of UV/H2O2. Possible degradation pathways of selected CECs were proposed based on high resolution mass spectrometry identification of transformation products (TPs). Toxicity assessments included cytotoxicity, aryl hydrocarbon receptor-binding activity, and estrogen receptor-binding activity, in order to evaluate potential environmental impacts resulting from CEC degradation by UV/H2O2. Cytotoxicity and estrogenic activity were significantly reduced during the degradation of mixed CECs in Milli-Q water by UV/H2O2 with high UV fluence (3200 ml cm(-2)). However, in GWRS RO-treated water samples collected in April 2017, the cytotoxicity and estrogen activity of spiked CEC-mixture after UV/H2O2 treatment were not significantly eliminated; this might be due to the high concentration of target CEC and their TPs, which was possibly affected by the varied quality of the secondary treatment influent at this facility such as sewer-shed and wastewater discharges. This study aimed to provide insight on the impacts of post-UV/H2O2 CECs and TPs on human and ecological health at cellular level. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据