4.4 Article

Exploring Artificial Neural Network to Evaluate the Undrained Shear Strength of Soil from Cone Penetration Test Data

期刊

TRANSPORTATION RESEARCH RECORD
卷 2674, 期 4, 页码 11-22

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0361198120912426

关键词

-

资金

  1. Louisiana Transportation Research Center (LTRC Project) [17-2GT]
  2. Louisiana Department of Transportation and Development [DOTLT1000165]

向作者/读者索取更多资源

In geotechnical design practices, the undrained shear strength of soil is regarded as one of the engineering properties of paramount importance. Over the past years, several theoretical and empirical methods have been developed to estimate the undrained shear strength based on soil properties using in-situ tests such as cone and piezocone penetration tests (CPT and PCPT). However, most of these methods involve correlation assumptions that can result in inconsistent accuracy. In this paper, an artificial neural network (ANN) is used to devise a model with a better and more consistent prediction of the undrained shear strength of soil from CPT data. The ANN algorithm does not require such assumptions as it learns from previous cases/instances. A database was prepared of soil boring data and laboratory test data along with corresponding CPT/PCPT data from 70 test sites located in 14 different parishes in Louisiana. Presenting this data to the ANN, models were trained through trial and error using different network algorithms, such as back propagation method and quasi-Newton method. Different ANN models were trained using corrected cone tip resistance and sleeve friction input data along with some other easily measurable soil properties. The results of ANN models were then compared with a conventional empirical method of determining undrained shear strength of soil from CPT parameters. The results of this study clearly demonstrated that the ANN models outperformed the conventional empirical method, which confirms the applicability of ANN in the evaluation of the undrained shear strength of soil from CPT data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据