4.7 Article

Characterizing dynamic crack-tip stress distribution and evolution under blast gases and reflected stress waves by caustics method

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tafmec.2020.102632

关键词

Blast gas; Reflected stress wave; Caustics method; High-speed photography; Stress intensity factor; Fracture surface

资金

  1. National Natural Science Foundation of China [51974318]
  2. China Scholarship Council [201706430043]

向作者/读者索取更多资源

Blast gases and reflected stress waves are crucial in the blast fracturing process. Characterizing dynamic crack-tip stress distribution and evolution under these two loadings is difficult due to challenges in visualizing blast-induced cracks, gases, and stress waves simultaneously and the subsequent interpretation. This paper presents an optical caustics method with high-speed photography to visualize gases and reflected stress waves and capture the caustics pattern in the crack tip, using a PMMA plate (400 mm x 300 mm x 5 mm) subjected to the explosion of lead azide (120 mg). And then a modified analytical model was proposed to reproduce experimental results and extract stress intensity factors (SIFs) more precisely than the classical caustics interpretation. Finally, fracture surface was examined by a light microscope. Crack-tip stress distribution and evolution are indicated by the shape and size of the caustics pattern, respectively. The classical (circle) caustics pattern under gases indicates K-dominated stress field in the crack tip, while the distorted (ellipse) caustics pattern under reflected stress waves implies K-dominated stress field is violated. By the modified SIFs measurement, it is found that SIFs under gases decrease and produce bigger and sparser micro cracks on the fracture surface, while SIFs increase under reflected stress waves with a higher loading rate and cause smaller and denser micro cracks. Based on the change of micro cracks, the curved crack front is identified in the transition of gas and reflected stress wave loadings. This paper shows that caustics method can visualize and precisely characterize crack-tip stress field under quasi-static loading of blast gases and transient loading of reflected stress waves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据