4.8 Article

Tuning Surface Chemistry of TiC Electrodes for Lithium-Air Batteries

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 22, 页码 8248-8255

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b03195

关键词

-

资金

  1. Russian German laboratory at HZB
  2. Russian Ministry of Science and Education [RFMEFI61614X0007]
  3. Bundesministerium fur Bildung and Forschung [05K2014]

向作者/读者索取更多资源

One of the key problems hindering practical implementation of lithium-air batteries is caused by carbon cathode chemical instability leading to low energy efficiency and short cycle life. Titanium carbide (TiC) nanopowders are considered as an alternative cathode material; however, they are intrinsically reactive toward oxygen, and its stability is controlled totally by a surface overlayers. Using photo-emission spectroscopy, we show that lithium-air battery discharge product, lithium peroxide (Li2O2), easily oxidizes clean TiC surface. At the same time, TiC surface, which was treated by molecular oxygen under ambient conditions, shows much better stability in contact with Li2O2 that can be explained by the presence of a surface layer containing a significant amount of elemental carbon in addition to oxides and oxycarbides. Nevertheless, such protective coatings produced by room temperature oxidation are not practically useful as one of its components, elemental carbon, is oxidized in the presence of lithium-air battery discharge intermediates. These results are of critical importance in understanding of TiC surface chemistry and in design of stable lithium air battery electrodes. We postulate that dense, uniform, carbon-free titanium dioxide surface layers of 2-3 nm thickness on TiC will be a promising solution, and thus further efforts should be taken for developing synthetic protocols enabling preparation of TiO2/TiC core-shell structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据