4.8 Article

Synergistically Coupling Black Phosphorus Quantum Dots with MnO2 Nanosheets for Efficient Electrochemical Nitrogen Reduction Under Ambient Conditions

期刊

SMALL
卷 16, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201907091

关键词

black phosphorus; MnO2; nitrogen fixation; nitrogen reduction reaction; quantum dots

资金

  1. Taishan Scholars Program of Shandong Province [tsqn201909119]
  2. National Natural Science Foundation of China [21676064, 21878063]

向作者/读者索取更多资源

The electrochemical nitrogen reduction reaction (NRR) is a promising strategy of nitrogen fixation into ammonia under ambient conditions. However, the development of electrochemical NRR is highly bottlenecked by the expensive noble metal catalysts. As a representative 2D nonmetallic material, black phosphorus (BP) has the valence electron structure similar to nitrogen, which can effectively adsorb the inactive nitrogen molecule and activate its triple bond. In addition, the relatively weak hydrogen adsorption can restrict the competitive and vigorous hydrogen evolution reaction. Herein, ultrafine BP quantum dots (QDs) are prepared via liquid-phase exfoliation and then assembled on catalytically active MnO2 nanosheets through van der Waals interactions. The obtained BP QDs/MnO2 catalyst demonstrates admirable synergetic effects in electrochemical NRR. The monodisperse BP QDs providing major activity manifest excellent ammonia production steadily with high selectivity, which benefits from the robust confinement of the BP QDs on the wrinkled MnO2 nanosheets with decent activity. A high ammonia yield rate of 25.3 mu g h(-1) mg(cat.)(-1) and faradic efficiency of 6.7% can be achieved at -0.5 V (vs RHE) in 0.1 m Na2SO4 electrolyte, which are dramatically superior to either component. The isotopic labelling and other control tests further exclude the external contamination possibility and attest the genuine activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据