4.8 Review

Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors

期刊

CHEMISTRY OF MATERIALS
卷 29, 期 6, 页码 2402-2413

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b03306

关键词

-

资金

  1. SUPER SOLAR Solar Energy Hub [EP/J017361/1]
  2. EPSRC [EP/N01572X/1, EP/K016288/1, EP/L000202]
  3. Engineering and Physical Sciences Research Council [EP/J017361/1, EP/N01572X/1, EP/L000202/1, EP/K016288/1] Funding Source: researchfish
  4. EPSRC [EP/N01572X/1, EP/J017361/1, EP/L000202/1, EP/K016288/1] Funding Source: UKRI

向作者/读者索取更多资源

The paucity of high performance transparent p-type semiconductors has been a stumbling block for the electronics industry for decades, effectively hindering the route to efficient transparent devices based on p-n junctions. Cu-based oxides and subsequently Cu-based oxychalcogenides have been heavily studied as affordable, earth-abundant p-type transparent semiconductors, where the mixing of the Cu 3d states with the chalcogenide 2p states at the top of the valence band encourages increased valence band dispersion. In this article, we extend this mixing concept further, by utilizing quantum chemistry techniques to investigate ternary copper phosphides as potential high mobility p-type materials. We use hybrid density functional theory to examine a family of phosphides, namely, MCuP (M = Mg, Ca, Sr, Ba) which all possess extremely disperse valence band maxima, comparable to the dispersion of excellent industry standard n-type transparent conducting oxides. As a proof of concept, we synthesized and characterized powders of CaCuP, showing that they display high levels of p-type conductivity, without any external acceptor dopant. Lastly, we discuss the role of Cu-coordination in promoting valence band dispersion and provide design principles for producing degenerate p-type materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据