4.8 Article

Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 11, 页码 3944-3950

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b01261

关键词

-

资金

  1. JSPS KAKENHI [26810123]
  2. Grants-in-Aid for Scientific Research [16K05935, 26810123] Funding Source: KAKEN

向作者/读者索取更多资源

This report demonstrates a facile one-pot synthesis of hierarchically porous resorcinol-formaldehyde (RF) gels comprising mesoporous nanorod assemblies with two-dimensional (2D) hexagonal ordering by combining a supramolecular self-assembly strategy in the nanometer scale and phase separation in the micrometer scale. The tailored multilevel pore system in the polymer scaffolds can be preserved through carbonization and thermal activation, yielding the multimodal porous carbon and activated carbon (AC) monoliths. The thin columnar macroframeworks are beneficial for electrode materials due to the short mass diffusion length through small pores (micro- and mesopores). By employing the nanostructured AC monolith as a binder-free electrode for supercapacitors, we have also explored the capability of water-in-salt electrolytes, aiming at high-voltage aqueous supercapacitors. Despite that the carbon electrode surface is supposed to be covered with salt-derived decomposition products that hinder the water reduction, the effective surface area contributing to electric double-layer capacitance in 5 M bis(trifluoromethane sulfonyl)imide (LiTFSI) is found to be comparable to that in a conventional neutral aqueous electrolyte. The expanded stability potential window of the superconcentrated electrolyte allows for a 2.4 V-class aqueous AC/AC symmetric supercapacitor with good cycle performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据