4.8 Article

Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 22, 页码 8210-8220

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b03048

关键词

-

资金

  1. UCL Chemistry Department
  2. EPSRC [EP/K016288/1, EP/L000202]
  3. EPSRC [EP/K016288/1, EP/L000202/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/K016288/1, EP/L000202/1] Funding Source: researchfish

向作者/读者索取更多资源

LaFeO3, a mixed ionic electronic conductor, is a promising cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). Key to understanding the electronic and ion conducting properties is the role of defects. In this study ab initio and static lattice methods have been employed to calculate formation energies of the full range of intrinsic defects-vacancies, interstitials, and antisite defects-under oxygen rich and oxygen poor conditions, to establish which, if any, are likely to occur and the effect these will have on the properties of the material. Under oxygen rich conditions, we find that the defect chemistry favors p-type conductivity, in excellent agreement with experiment, but contrary to previous studies, we find that cation vacancies play a crucial role. In oxygen poor conditions O2- vacancies dominate, leading to n-type conductivity. Finally, static lattice methods and density functional theory were used to calculate activation energies of oxide ion migration through this material. Three pathways were investigated between the two inequivalent oxygen sites, O1 and O2; O2-O2, O1-O2, and O1-O1, with O2-O2 giving the lowest activation energy of 0.58 eV, agreeing well with experimental results and previous computational studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据