4.8 Article

High-Pressure Synthesis of a Pentazolate Salt

期刊

CHEMISTRY OF MATERIALS
卷 29, 期 2, 页码 735-741

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b04538

关键词

-

资金

  1. Defense Threat Reduction Agency [HDTRA1-12-1-0023]
  2. U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52- 07NA27344]
  3. U.S. NSF [EAR-0622171, DMR-1231586]
  4. DOE Geosciences [DE-FG02-94ER14466]
  5. DOE-BES [DE-AC02-06CH11357]
  6. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [1231586] Funding Source: National Science Foundation

向作者/读者索取更多资源

The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N-5(-), which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N-2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N-5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据