4.7 Article

Ultraviolet photodetectors using hollow p-CuO nanospheres/n-ZnO nanorods with a pn junction structure

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2020.111876

关键词

UV detector; Hollow CuO; ZnO; Transfer of spheres monolayer

资金

  1. Basic Science Research Program of the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF2018R1D1A1B07048382]

向作者/读者索取更多资源

We report on ultraviolet (UV) photodetectors with a pn junction structure consisting of hollow p-CuO (h-CuO) nanospheres and n-ZnO nanorods (NRs). To form the pn junction structure, thermal annealing was conducted using a transferred monolayer of Cu-ion-incorporated polymer spheres onto the n-ZnO NRs/n-Si substrate. Device performance was evaluated by comparing the effects of h-CuO nanosphere coverage changed by sphere shrinkage during thermal annealing of Cu-ion-incorporated polymer spheres. Three samples were prepared by varying the transfer times of h-CuO on ZnO NRs: 0 times (Reference), 1 time (CZ-I), and 2 times (CZ-II). The CZ-II-based UV detector shows a fast rising time of 1.8 s and a falling time of 0.26 s, which are faster rising by 2.2 and 1.3 times and faster falling by 3.1 and 32.6 times than those of the CZ-I and Reference UV detectors, respectively, under illumination with UV light at 254 nm. Moreover, the On/Off current ratio of the CZ-II UV detector is 4.58, which is about 3.3 times and 3.5 times higher than that of the CZ-I and Reference devices, respectively. The higher h-CuO coverage on the ZnO NRs that form the pn junction structure can effectively separate the electron and hole and suppress recombination by mutual transfer of photo-generated electrons and holes in the heterojunction. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据