4.8 Article

LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn-Teller Active Ions

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 18, 页码 6644-6655

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b02783

关键词

-

资金

  1. JSPS KAKENHI [25249090, 25248016, 26106514, 15J08052]
  2. Grants-in-Aid for Scientific Research [25248016, 26106514, 16H04496, 16K14386, 15J08052, 25249090] Funding Source: KAKEN

向作者/读者索取更多资源

Great effort has been devoted to developing single-phase magnetoelectric multiferroics, but room-temperature coexistence of large electric polarization and magnetic ordering still remains elusive. Our recent finding shows that such polar magnets can be synthesized in small-tolerance-factor perovskites AFeO(3) with unusually small cations at the A-sites, which are regarded as having a LiNbO3-type structure (space group R3c). Herein, we experimentally reinforce this finding by preparing a novel room-temperature polar magnet, LiNbO3-type InFeO3. This compound is obtained as a metastable quench product from an orthorhombic perovskite phase stabilized at 15 GPa and an elevated temperature. The structure analyses reveal that the polar structure is characterized by displacements of In3+ (d(10)) and Fe3+ (d(5)) ions along the hexagonal c-axis (pseudocubic [111] axis) from their centrosymmetric positions, in contrast to well-known perovskite ferroelectrics (e.g., BaTiO3, PbTiO3, and BiFeO3) where d(0) transition-metal ions and/or 6s(2) lone-pair cations undergo polar displacements through the so-called second-order Jahn-Teller (SOJT) distortions. Using density functional theory calculations, the electric polarization of LiNbO3-type InFeO3 is estimated to be 96 mu C/cm(2) along the c-axis, comparable to that of an isostructural and SOJT-active perovskite ferroelectric, BiFeO3 (90-100 mu C/cm(2)). Magnetic studies demonstrate weak ferromagnetic behavior at room temperature, as a result of the canted G-type antiferromagnetic ordering of Fe3+ moments below T-N similar to 545 K. The present work shows the functional versatility of small-tolerance-factor perovskites and provides a useful guide for the synthesis and design of room-temperature polar magnets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据