4.7 Article

Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 717, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137178

关键词

AgNPs; Epithelialization; Proliferation; Neutrophil; Reactive oxygen species

资金

  1. National Natural Science Foundation of China [21707050, 21677170, 21876194]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB14010300]

向作者/读者索取更多资源

Dressings coated with silver nanoparticle (AgNP) are widely used in the management of acute and chronic wounds. However, whether AgNP exerts toxicity on wound healing remains ambiguous. To demonstrate the effects of AgNP on wound healing, we precisely quantified the recovery speed of wound by taking advantage of the fin regeneration of zebrafish. This method also enabled assessment of the adverse effect of AgNP on various steps of wound healing in vivo. We revealed that AgNP treatment at the concentration of 2 mu g/ml impaired fin regeneration when exposure was performed at the phases of epithelialization and the beginning of blastema formation. Cell proliferation of regenerative blastema was significantly decreased after AgNP exposure. But the canonical signals including Wingless/Integrated (Wnt), Notch and Fibroblast growth factor (Fgf) which play important roles in cell proliferation during fin regeneration were not modulated at 36 hours post amputation (hpa). Further study showed that AgNP impaired fin regeneration through declining amputation-induced ROS as early as epithelialized phase at 18 hpa, rather than inducing ROS generation. AgNP exposure also promoted recruitment of neutrophils in the early phase of wound healing, which suggests that this event dampened amputation-induced ROS. Overall, this study suggested that application of AgNP-coated dressings should be carefully considered at the beginning stage of wound healing. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据