4.7 Article

Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 714, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136764

关键词

Aerobic granulation; Continuous-flow reactor; Dynamic feeding; Nitrogen removal

资金

  1. Science, Technology and Innovation Commission of Shenzhen Municipality [JSGG20180504165610859]

向作者/读者索取更多资源

This study investigated the aerobic sludge granulation and nitrogen removal performance in a modified airlift loop reactor treating municipal wastewater under different operation conditions. Dynamic feeding and aeration control were applied to create feast/famine conditions to facilitate microbial aggregation. Experimental results demonstrated that aerobic granular sludge could be cultivated in continuous-flow reactors fed with an optimized dynamic feeding condition. Fresh granules sizing 0.4-0.6 nun were observed in the reactors after a 61-day operation, then turned to matured granules after another 33-day operation with a compact structure, a stable size of 2-4 mm, and a low SVI of similar to 35 mL/g. Extracellular polymeric substances (EPS) analysis results showed that both EPS contents and the ratio of protein to polysaccharides increased with the granulation process, leading to an increase of cell hydrophobicity. Granular sludge exhibited a good nitrogen removal ability with a comparable level of specific nitrification rate and denitrification rate with those measured in state-of-the-art sequential batch reactors. Microbial population analysis showed an increase in the relative abundance of functional microbes, induding Zoogloea. Nitrospira. Dechloromonas, and Thauera in the cultivated granules, suggesting a potentially crucial role of these microbes in sludge granulation and nitrogen removal. The dynamic feeding strategy and the reactor configuration are considered as critical factors for aerobic granulation under continuous-flow conditions for creating feast/famine conditions and allow sludge backflow without structure damage. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据