4.7 Article

Seasonal drivers of chemical and hydrological patterns in roadside infiltration-based green infrastructure

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 714, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136503

关键词

Green infrastructure; Infiltration; Road salt; Legacy; Contamination; Stormwater

资金

  1. Heinz Foundation
  2. Richard King Mellon Foundation
  3. Pittsburgh Parks Conservancy

向作者/读者索取更多资源

Infiltration-based green infrastructure has become a popular means of reducing stormwater hazards in urban areas. However, the long-term effects of green infrastructure on the geochemistry of roadside environments are poorly defined, particularly given the considerable roadside legacy metal contamination from historic industrial activity and vehicle emissions (e.g., Pb). Most current research on green infrastructure geochemistry is restricted to time periods of less than a year or limited sets of chemical species. This further limits our understanding of systems that evolve over time and are subject to seasonal variability. Between 2016 and 2018, two infiltration trenches in Pittsburgh, PA, were monitored to determine infiltration rates and dissolved nutrient and metal content. The trench water was analyzed to characterize seasonal patterns in both trench function and chemistry. Shifting patterns in infiltration rate and geochemical activity show trends corresponding with seasonal changes. Trench function is dependent on the local water table, with the highest infiltration rates occurring when evapotranspiration is active and groundwater elevation is low. Two seasonal chemical patterns were identified. The first is driven by road salt application in the winter and interaction of the salt pulse increase Pb and Cu concentrations. The second is driven by the formation of summer reducing environments that increase dissolved Fe and Mn. These findings suggest that chemical and hydrological activity in infiltration-based green infrastructure varies seasonally and may remobilize legacy contamination. (C) 2020 Elsevier B.V. All lights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据