4.7 Article

Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shift in a historically petroleum-contaminated soil

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 713, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.136331

关键词

Petroleum-contaminated soil; Refractory hydrocarbons; Drip irrigation; Biostimulation; Microbial community composition

资金

  1. National Natural Science Foundation of China [21577109]
  2. Program for Innovative Research Team in Shaanxi (PIRT) [2013KCT-13]
  3. Natural Science Foundation of Shaanxi Province [2015JM5163]
  4. Key Laboratory Project of the Shaanxi Provincial Education Department [13JS048]

向作者/读者索取更多资源

An adequate amount of nutrients is required to enable biodegradation of refractory hydrocarbons in petroleum-contaminated soil. In this study, a microcosm experiment was conducted using a drip fertigation method for petroleum-contaminated soil remediation. Nitrogen and phosphorus were homogeneously and periodically sprayed into a historically contaminated soil using a modified horticultural drip irrigation device. Various petroleum hydrocarbon fraction contents were then determined by gravimetry and gas chromatography (GC), and changes in the soil microbial community were analyzed by high throughput sequencing. After 90 days of remediation, the removal efficiencies of total petroleum hydrocarbon (TPH), saturates. aromatics, C7-C30 n-alkanes, and 16 PAHs were respectively enhanced by 21.5%, 25.5%, 12.4%, 10.4%, and 19.6% compared with the use of a single nutrient amendment application. The high throughput sequencing result showed that obvious changes had occurred in the soil microbial community compositions during drip fertigation: however, fungi were more sensitive to drip fertigation than bacteria. The resulting predominant bacterial and fungal genera were Dietzia, Nocardioides, Mycobacterium, Sphaerobacter, Leifsonia, and Aspergillus, Scolecobasidium, and Fusmium, respectively. Remediating polluted soils by regular fertigation ensures the automatic addition of even amounts of nutrients, which achieves high refractory hydrocarbon removal efficiencies. It is expected that this method can be applied in the in-situ remediation of petroleum-contaminated soil on a large scale. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据