4.7 Article

Screening for the action mechanisms of Fe and Ni in the reduction of Cr (VI) by Fe/Ni nanoparticles

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 715, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136822

关键词

Metallic nanoparticles; Ni; Cr(VI); Reduction; Remediation

资金

  1. Key Project of Natural Science Foundation of China [41230638]
  2. Wuhan University of Science and Technology [2016WKD06]

向作者/读者索取更多资源

Zero-valent iron (ZVI), Fe2+ and H-2 are possible electron donors in the reduction of Cr(VI) by nanoscale ZVI (n-ZVI). However, it is often ambiguous about the roles of these electron donors in the reductive removal of Cr(VI) from groundwater and wastewater. This study investigated the action mechanisms of Fe and Ni in Cr(VI) reduction by Fe/Ni nanoparticles (n-Fe/Ni). Among the three possible reduction mechanisms of ZVI, direct electron transfer from ZVI and its corrosion product, Fe2+, were confirmed to be responsible for the reduction removal of Cr(VI). H-2, another product of ZVI corrosion, was found incapable of reducing Cr(VI). In addition, the secondary metal Ni in n-Fe/Ni was found to facilitate the direct electron transfer from ZVI owing to its ability to inhibit the passivation of ZVI and to enhance the production of Fe2+ due to the formation of Fe-Ni galvanic cells. The results of characterizations on n-Fe/Ni before and after the reaction with Cr(VI) demonstrated that Cr(VI) was reduced to Cr(III), which existed as FeCr2O4 precipitates on the surface of n-Fe/Ni, resulting in effective sequestration of Cr (VI). These findings are important for understanding the main mechanisms of bimetallic nanoparticles or nanomaterials for reductive immobilization of Cr(VI). and may guide further ZVI-based technology development for remediation of contaminated water or soil with redox-active contaminants. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据