4.7 Article

A machine-learning framework for predicting multiple air pollutants' concentrations via multi-target regression and feature selection

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 715, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136991

关键词

Air pollution; Machine learning; Multi-target regression (MTR); Feature ranking; Forecasting

向作者/读者索取更多资源

Air pollution is considered one of the biggest threats for the ecological system and human existence. Therefore, air quality monitoring has become a necessity in urban and industrial areas. Recently, the emergence of Machine Learning techniques justifies the application of statistical approaches for environmental modeling, especially in air quality forecasting. In this context, we propose a novel feature ranking method, termed as Ensemble of Regressor Chains-guided Feature Ranking (ERCFR) to forecast multiple air pollutants simultaneously over two cities. This approach is based on a combination of one of the most powerful ensemble methods for Multi-Target Regression problems (Ensemble of Regressor Chains) and the Random Forest permutation importance measure. Thus, feature selection allowed the model to obtain the best results with a restricted subset of features. The experimental results reveal the superiority of the proposed approach compared to other state-of-the-art methods, although some cautions have to be considered to improve the runtime performance and to decrease its sensitivity over extreme and outlier values. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据