4.7 Article

Analysis of engineered nanomaterials (Ag, CeO2 and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 715, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136927

关键词

Nanomaterial extraction; Nanomaterial characterization; Engineered nanomaterial quantification; AF4-ICP-MS; sp-ICP-MS, sodium pyrophosphate

资金

  1. US National Science Foundation CAREER [1553909]
  2. Swiss National Science Foundation [P2GEP2_165046]
  3. Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth) - NSF [ECCS 1542100]
  4. Swiss National Science Foundation (SNF) [P2GEP2_165046] Funding Source: Swiss National Science Foundation (SNF)
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1553909] Funding Source: National Science Foundation

向作者/读者索取更多资源

Quantification of engineered nanomaterials (ENMs) concentrations in surface waters remains one of the key challenges in environmental nanoscience and nanotechnology. A promising approach to estimate metal and metal oxide ENM concentrations in complex environmental samples is based on the increase in the elemental ratios of ENM-contaminated samples relative to the corresponding natural background elemental ratios. This contribution evaluated the detection and quantification of Ag, CeO2, and Fe2O3 ENMs spiked in synthetic soft, or in natural river waters using the elemental ratio approach, and evaluated the effect of extractants including sodium hydroxide (NaOH), sodium oxalate (Na2C2O4) and sodium pyrophosphate (Na4P2O7) on the recovery of ENMs from the spiked waters. The extracted ENM concentrations were higher in Na4P2O7-extracted suspensions than in NaOH- and Na2C2O4-extracted suspensions due to the higher efficiency of Na4P2O7 to break up natural and engineered nanomaterial heteroaggregates. The size distributions of the extracted suspensions were determined by asymmetrical flow-field flow fractionation coupled to inductively coupled plasma-mass spectrometer (AF4-ICP-MS). These size distribution analysis demonstrated that Ag ENMs were extracted from the spiked liver water as both primary particles and small (<100 nm) aggregates, whereas CeO2 ENMs were extracted from the spiked river water as aggregates of particles in the size range 0-200 nm. The number particle size distribution of the extracted suspensions confirmed that Ag ENMs were extracted as a mixture of primary and aggregated Ag ENMs. Small Ag ENMs (Le. <20 nm) were detected by AF4-ICP-MS, but these particles were not detected by single particle (sp)-ICP-MS due to high size detection limit of sp-ICP-MS. This study illustrates that the elemental ratio approach is a promising approach to detect and quantify ENMs in surface waters. This study also illustrates the need fora multi-method approach, including extraction, filtration. AF4-ICP-MS and sp-ICP-MS, to detect, quantify, and characterize ENMs in surface waters. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据