4.7 Article

Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 715, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.136904

关键词

DNA sequencing; Heavy metal fractions; Soil chemical properties; Microbial community; Bioindicators

资金

  1. Science and Technology Project for Sichuan Environmental Protection, China [2018HB30]
  2. Key Research and Development Program of Sichuan Province, China [2019YFN0020]

向作者/读者索取更多资源

Heavy metal contamination in soils poses a serious threat to microorganisms, which play important roles in soil biogeochemical process. However, the key fractions of heavy metals affecting soil microorganisms are still unclear. In this study, DNA sequencing, redundancy and variance partition analysis were performed to investigate the combined effects of heavy metal fractions and soil chemical properties on microbial communities in Pb, Cd, and Zn co-contaminated soils. The results showed that long-term exposure of microorganisms to these metals changed the richness, diversity, and structure of their communities. The bacterial and fungal Chao richness indexes decreased, but only the bacterial Shannon index improved with increasing metal concentrations. Moreover, soil available potassium and add-extractable Pb made the greatest contributions to variations in the bacterial community structure, while soil pH, water-extractable Pb and Zn were the dominant factors influencing the fungal community structure. In addition, Marmoricola, Nocardioides, and Gibberella were sensitive to these metals. Overall, the effects of different heavy metal fractions on microorganisms varied significantly, and these metal fractions together with soil chemical properties determined the soil microbial communities. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据