4.8 Article

VxIn(2-x)S3 Intermediate Band Absorbers Deposited by Atomic Layer Deposition

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 7, 页码 2033-2040

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b04402

关键词

-

资金

  1. U.S. Department of Energy [DE-AC02-06CH11357]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  3. ARCS foundation
  4. Department of Energy
  5. Illinois Institute of Technology

向作者/读者索取更多资源

Substitutional alloys of several thin film semiconductors have been proposed as intermediate band (IB) materials for use in next-generation photovoltaics, which aim to utilize a larger fraction of the solar spectrum without sacrificing significant photovoltage. We demonstrate a novel approach to IB material growth, namely atomic layer deposition (ALD), to allow unique control over substitutional-dopant location and density. Two new ALD processes for vanadium sulfide incorporation are introduced, one of which incorporates a vanadium(III) amidinate previously untested for ALD. Using this process, we synthesize the first thin film VxIn(2-x)S3 intermediate band semiconductors and further demonstrate that the V:In ratio, and therefore intraband gap density of states, can be finely tuned according to the ALD dosing schedule. Deposition on a crystalline In2S3 underlayer promotes the growth of a tetragonal beta-In2S3-like phase VxIn(2-x)S3, which exhibits a distinct sub-band gap absorption peak with onset near 1.1 eV in agreement with computational predictions. However, the VxIn(2-x)S3 films lack the lower-energy transition predicted for a partially filled IB, and photoelectrochemical devices reveal a photocurrent response only from illumination with energy sufficient to span the parent band gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据