4.8 Article

Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 22, 页码 8278-8288

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b03338

关键词

-

资金

  1. U.S. department of Energy [DE-AC02-06CH11357]
  2. European Research Council (ERC) [670116-ARPEMA]

向作者/读者索取更多资源

The recent revival of the Na-ion battery concept has prompted intense activities in the search for new Na-based layered oxide positive electrodes. The largest capacity to date was obtained for a Na-deficient layered oxide that relies on cationic redox processes only. To go beyond this limit, we decided to chemically manipulate these Na-based layered compounds in a way to trigger the participation of the anionic network. We herein report the electrochemical properties of a Na-rich phase Na2IrO3, which can reversibly cycle 1.5 Na+ per formula unit while not suffering from oxygen release nor cationic migrations. Such large capacities, as deduced by complementary XPS, X-ray/neutron diffraction and transmission electron microscopy measurements, arise from cumulative cationic and anionic redox processes occurring simultaneously at potentials as low as 2.7 V vs Na+/Na. The inability to remove more than 1.5 Na+ is rooted in the formation of an O1-type phase having highly stabilized Na sites as confirmed by DFT calculations, which could rationalize as well the competing metal/oxygen redox processes in Na2IrO3. This work will help to define the most fertile directions in the search for novel high energy Na-rich materials based on more sustainable elements than Ir.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据