4.8 Article

Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells

期刊

CHEMISTRY OF MATERIALS
卷 28, 期 3, 页码 802-812

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b04019

关键词

-

资金

  1. National Key Basic Research Program of China [2012CB921403, 2015CB921001]
  2. National Natural Science Foundation of China [11222431, 11574365]
  3. Chinese Academy of Sciences [XDB07030100]
  4. US National Science Foundation
  5. Army Research Office
  6. Direct For Mathematical & Physical Scien
  7. Division Of Materials Research [1205734] Funding Source: National Science Foundation

向作者/读者索取更多资源

Organometal halide perovskite solar cells (PSCs) have emerged as one of the most promising photovoltaic technologies with efficiencies exceeding 20.3%. However, device stability problems including hysteresis in current voltage scans must be resolved before the commercialization of PSCs. Transient absorption measurements and first-principles calculations indicate that the migration of oxygen vacancies in the TiO2 electrode under electric field during voltage scans contributes to the anomalous hysteresis in PSCs. The accumulation of oxygen vacancies at the electrode/perovskite interface slows down charge extraction while significantly speeding up charge recombination at the interface. Moreover, nonadiabatic molecular dynamics simulations reveal that the charge recombination rates at the interface depend sensitively (with 1 order of magnitude difference) on the locations of oxygen vacancies. By intentionally reducing oxygen vacancies in the TiO2 electrode, we substantially suppress unfavorable hysteresis in the PSC devices. This work establishes a firm link between microscopic interfacial structure and macroscopic device performance of PSCs, providing important clues for future device design and optimization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据