4.5 Article

Fetal Membrane Organ-On-Chip: An Innovative Approach to Study Cellular Interactions

期刊

REPRODUCTIVE SCIENCES
卷 27, 期 8, 页码 1562-1569

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s43032-020-00184-9

关键词

amnion epithelial cells; decidual cells; fetal membrane organ-on-chip

资金

  1. National Institutes of Health (NIH) [AI134036]
  2. March of Dimes
  3. Department of Veteran Affairs [BX002853]
  4. US Environmental Protection Agency (EPA) Grant [83573601]
  5. NICHD [1R01HD084532-01A1]

向作者/读者索取更多资源

Objective: Fetal membranes, a vital component that helps maintain pregnancy and contribute to parturition signaling, are often studied in segments due to its structural complexity. Transwells are traditionally used to study cell interactions; however, their usefulness is limited. To overcome these difficulties, a fetal membrane-organ-on-chip (FM-OO-C) was created to study interactive properties of amnion epithelial cells (AECs) and decidual cells compared to transwell systems. Methods: Primary AECs and decidual cells from term, nonlaboring fetal membranes were cultured in a 2-chamber (AEC/decidual cell) FM-OO-C device and sandwiched between a semipermeable membrane. Cells were treated with cigarette smoke extract (CSE) or dioxin, and membrane permeability and cellular senescence were measured after 48 hours. The same experiments were conducted in transwells for comparisons. Results: Compared to transwell cultures, FM-OO-C model produced better membrane permeability readings regardless of the side of treatment or time point. Membrane permeabilization was higher in AECs directly treated with CSE (1.6 fold) compared to similar treatment on the decidual side (1.2 fold). In FM-OO-C, treatments forced changes between cellular layers. This was evident when CSE and dioxin-induced senescence on one side of the chamber produced similar changes on the opposite side. This effect was minimal in the transwell system. Conclusion: The controlled environment of an FM-OO-C allows for improved signal propagation between cells by minimizing noise and highlighting the small changes between treatments that cannot be seen in conventional transwell devices. Fetal membrane-organ-on-chip provides a better interaction between cell types that can be used to study fetal-maternal signaling during pregnancy in future studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据