4.7 Article

Effective carbon nanotube supported metal (M=Au, Ag, Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells

期刊

RENEWABLE ENERGY
卷 150, 期 -, 页码 78-90

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.12.104

关键词

Au; Pd; Ni; Co; Formic acid electrooxidation; NaBH4 reduction

资金

  1. Scientific and Technological Research Council of Turkey TUBITAK [114M156]

向作者/读者索取更多资源

At present, CNT supported Pd and core-shell Pd-based catalysts are synthesized by employing the NaBH4 reduction method to investigate on formic acid electrooxidation (FAEO) activity. These catalysts are characterized by XRD, TEM, HRTEM, and XPS. The XRD results display that the electronic state of catalysts changed by second metal addition to Pd. TEM results reveal that Au and Pd are homogeneously distributed. XPS results of AucorePdshell/CNT catalyst show that Au and Pd atoms used in the preparation of the catalyst are obtained mainly in elemental state. The FAEO activity, stability, and resistance of these catalysts are investigated by employing cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The CV results show that AucorePdshell/CNT catalyst having 16.42 mAcm(-2) specific activity and 4978.23 mA mg(-1) Pd mass activity is better than other catalysts. In addition, the AucorePdshell/CNT (21 m(2)/g) catalyst has better electrochemical active surface area (ECSA) value as 5.25 times compared with Pd/CNT catalyst. Direct formic acid fuel cell (DFAFC) performances are performed at different temperatures for AucorePdshell/CNT and NicorePdshell/CNT catalysts. The specific activity of AucorePdshen/CNT catalyst is 2.5 times higher than the value for NicorePdshell/CNT catalyst. AucorePdshell catalyst is a promising catalyst for DFAFCs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据