4.7 Article

Desirability function approach for optimization of enzymatic transesterification catalyzed by lipase immobilized on mesoporous magnetic nanoparticles

期刊

RENEWABLE ENERGY
卷 158, 期 -, 页码 253-262

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.05.087

关键词

Biodiesel; Immobilized lipase; Magnetic nanoparticles; Response surface methodology

向作者/读者索取更多资源

Lipase-catalyzed transesterification for biodiesel production is clean, effective and water tolerance compare with conventional chemical or physical biodiesel synthesis methods. Therefore, in the present research, Burkholderia cepacia lipase was immobilized onto mesoporous silica/iron oxide magnetic core-shell nanoparticles for canola waste cooking oil (WCO) conversion to biodiesel. Response Surface Methodology (RSM) with Central Composite Design (CCD) was used to optimize the transesterification parameters. A quadratic polynomial equation was obtained for biodiesel yield by multiple regression analysis. Desirability function approach gave the optimal transesterification condition as: immobilized lipase concentration of 36%, reaction time of 25 h, methanol to WCO molar ratio of 6.2 and reaction temperature of 34 degrees C. The predicted biodiesel yield was 92% at the optimal condition. Transesterification catalyzed by the immobilized lipase carried out three times repeatedly, by losing just 11% of lipase activity in the third cycle of the transesterification. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据