4.7 Article

A voxel matching method for effective leaf area index estimation in temperate deciduous forests from leaf-on and leaf-off airborne LiDAR data

期刊

REMOTE SENSING OF ENVIRONMENT
卷 240, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2020.111696

关键词

Effective leaf area index; Airborne LiDAR; Leaf-off; Leaf-on; Voxel matching

资金

  1. Natural Resources Department, ITC, University of Twente
  2. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [834709]

向作者/读者索取更多资源

The quantification of leaf area index (LAI) is essential for modeling the interaction between atmosphere and biosphere. The airborne LiDAR has emerged as an effective tool for mapping plant area index (PAI) in a landscape consisting of both woody and leaf materials. However, the discrimination between woody and leaf materials and the estimation of effective LAI (eLAI) have, to date, rarely been studied at landscape scale. We applied a voxel matching algorithm to estimate eLAI of deciduous forests using simulated and field LiDAR data under leaf-on and leaf-off conditions. We classified LiDAR points as either a leaf or a woody hit on leaf-on LiDAR data by matching the point with leaf-off data. We compared the eLAI result of our voxel matching algorithm against the subtraction method, where the leaf-off effective woody area index (eWAI) is subtracted from the effective leaf-on PAI (ePAI). Our results, which were validated against terrestrial LiDAR derived eLAI, showed that the voxel matching method, with an optimal voxel size of 0.1 m, produced an unbiased estimation of terrestrial LiDAR derived eLAI with an R-2 of 0.70 and an RMSE of 0.41 (RRMSE: 20.1%). The subtraction method, however, yielded an R-2 of 0.62 and an RMSE of 1.02 (RRMSE: 50.1%) with a significant underestimation of 0.94. Reassuringly, the same outcome was observed using a simulated dataset. In addition, we evaluated the performance of 96 LiDAR metrics under leaf-on conditions for eLAI prediction using a statistical model. Based on the importance scores derived from the random forest regression, nine of the 96 leaf-on LiDAR metrics were selected. Cross-validation showed that eLAI could be predicted using these metrics under leaf-on conditions with an R-2 of 0.73 and an RMSE of 0.27 (RRMSE: 17.4%). The voxel matching method yielded a slightly lower accuracy (R-2: 0.70, RMSE:0.41, RRMSE: 20.1%) than the statistical model. We, therefore, suggest that the voxel matching method offers a new opportunity for the estimating eLAI and other ecological applications that require the classification between leaf and woody materials using airborne LiDAR data. It potentially allows transferability to different sites and flight campaigns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据