4.7 Article

A smart multiple spatial and temporal resolution system to support precision agriculture from satellite images: Proof of concept on Aglianico vineyard

期刊

REMOTE SENSING OF ENVIRONMENT
卷 240, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2020.111679

关键词

CNN image reconstruction; Pan-sharpening; Vineyard plant status; Dendro-ecological analysis; Plant hydraulics; Precision agriculture; Sentinel-2A; UAV; Wood anatomy; And isotopes

资金

  1. Ministry of Foreign Affairs and International Cooperation General Directorate for Country Promotion -Italian Republic
  2. Israel Innovation Authority Ministry of Economy
  3. Radicirpine di Canonico Santoli

向作者/读者索取更多资源

In this century, one of the main objectives of agriculture is sustainability addressed to achieve food security, based on the improvement of use efficiency of farm resources, the increasing of crop yield and quality, under climate change conditions. The optimization of farm resources, as well as the control of soil degradation processes (e.g., soil erosion), can be realized through crop monitoring in the field, aiming to manage the local spatial variability (time and space) with a high resolution. In the case of high profitability crops, as the case of vineyards for high-quality wines, the capability to manage and follow spatial behavior of plants during the season represents an opportunity to improve farmer incomes and preserve the environmental health. However, any field monitoring represents an additional cost for the farmer, which slows down the objective of a diffuse sustainable agriculture. Satellite multispectral images have been widely used for production management in large areas. However, their observation is limited by the pre-defined and fixed scale with relatively coarse spatial resolution, resulting in limitations in their application. In this paper, encouraged by recent achievements in convolutional neural network (CNN), a multiscale full-connected CNN is constructed for the pan-sharpening of Sentinel-2A images by UAV images. The reconstructed data are validated by independent multispectral UAV images and in-situ spectral measurements. The reconstructed Sentinel-2A images provide a temporal evaluation of plant responses using selected vegetation indices. The proposed methodology has been tested on plant measurements taken either in-vivo and through the retrospective reconstruction of the eco-physiological vine behavior, by the evaluation of water conductivity and water use efficiency indexes from anatomical and isotopic traits recorded in vine trunk wood. In this study, the use of such a methodology able to combine the pro and cons of space-borne and UAVs data to evaluate plant responses, with high spatial and temporal resolution, has been applied in a vineyard of southern Italy by analyzing the period from 2015 to 2018. The obtained results have shown a good correspondence between the vegetation indexes obtained from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based retrospective reconstruction of vine eco-physiological behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据