4.4 Article

Evaluation of Spatio-Temporal Characteristics of Different Zenith Tropospheric Delay Models in Antarctica

期刊

RADIO SCIENCE
卷 55, 期 5, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019RS006909

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0603104]
  2. State Key Program of National Natural Science Foundation of China [41531069]
  3. Independent Scientific Research Program for Cross-disciplinary of Wuhan University [2042017kf0209]

向作者/读者索取更多资源

Zenith tropospheric delay (ZTD) is one of the main error sources in space geodetic techniques, such as Global Positioning System (GPS) and satellite altimetry. To qualitatively and quantitatively determine the most suitable model for Antarctica, we analyze the accuracy and applicability of nine models (UNB3m, EGNOS, GPT2 + Saastamoinen, GPT2w + Saastamoinen, GPT3 + Saastamoinen, GPT2 + Hopfield, GPT2w + Hopfield, GPT3 + Hopfield, and IGGtropSH) in Antarctica using 8 years of GPS-derived ZTD time series from 65 stations. The results show that the GPT2/2w/3 + SAAS models are better than the other six models, with a bias of 0.2, -0.22, and -0.29 cm and root mean square (RMS) of 2.33, 2.31, and 2.36 cm. Based on the decimeter bias and RMS, the UNB3m model and EGNOS model present the worst performance in Antarctica. There are regional characteristics of bias and RMS in the nine models. The GPT2/2w/3 + SAAS models have the smallest regional deviation, and the bias and RMS between subregions (Antarctic Peninsula, Amundsen Sea Embayment, Ross Ice Shelf, Inland area of West Antarctica, Filchner-Ronne Ice Shelf, and coastal East Antarctica) are all at the 0.2 and 0.7 cm levels, respectively. The GPT2/2w/3 + HOP models have the largest regional deviation, with regional bias and RMS at the levels of 8 and 6 cm, respectively. Our results suggest that the uncertainty of ice sheet elevation derived from satellite altimetry may be partly caused by the spatial-related bias and error in the ZTD corrections. The bias and RMS of six GPT combined models and the IGGtropSH model present limited seasonal changes, indicating that these models can simulate the seasonal characteristics of ZTD better. The time series of the bias and RMS values of the EGNOS and UNB3m models show obvious seasonal characteristics, which may contaminate the annual ice sheet elevation by approximately 5 cm if used as ZTD corrections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据