4.6 Article

The ERA5 global reanalysis

期刊

出版社

WILEY
DOI: 10.1002/qj.3803

关键词

climate reanalysis; Copernicus Climate Change Service; data assimilation; ERA5; historical observations

资金

  1. European Union through the Copernicus Climate Change Service

向作者/读者索取更多资源

Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5 reanalysis which, once completed, will embody a detailed record of the global atmosphere, land surface and ocean waves from 1950 onwards. This new reanalysis replaces the ERA-Interim reanalysis (spanning 1979 onwards) which was started in 2006. ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 which was operational in 2016. ERA5 thus benefits from a decade of developments in model physics, core dynamics and data assimilation. In addition to a significantly enhanced horizontal resolution of 31 km, compared to 80 km for ERA-Interim, ERA5 has hourly output throughout, and an uncertainty estimate from an ensemble (3-hourly at half the horizontal resolution). This paper describes the general set-up of ERA5, as well as a basic evaluation of characteristics and performance, with a focus on the dataset from 1979 onwards which is currently publicly available. Re-forecasts from ERA5 analyses show a gain of up to one day in skill with respect to ERA-Interim. Comparison with radiosonde and PILOT data prior to assimilation shows an improved fit for temperature, wind and humidity in the troposphere, but not the stratosphere. A comparison with independent buoy data shows a much improved fit for ocean wave height. The uncertainty estimate reflects the evolution of the observing systems used in ERA5. The enhanced temporal and spatial resolution allows for a detailed evolution of weather systems. For precipitation, global-mean correlation with monthly-mean GPCP data is increased from 67% to 77%. In general, low-frequency variability is found to be well represented and from 10 hPa downwards general patterns of anomalies in temperature match those from the ERA-Interim, MERRA-2 and JRA-55 reanalyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据