4.4 Article

Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins

期刊

PROSTATE
卷 80, 期 9, 页码 715-726

出版社

WILEY
DOI: 10.1002/pros.23985

关键词

ECM; endostatin; fibroblasts; invasion; laminin-332; prostate cancer

资金

  1. K. Albin Johanssons Stiftelse
  2. Academy of Finland [259769]
  3. Sigrid Juseliuksen Saatio
  4. European Commission
  5. Syopajarjestot
  6. Academy of Finland (AKA) [259769, 259769] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Background Tumor microenvironment or stroma has the potency to regulate the behavior of malignant cells. Fibroblast-like cells are abundant in tumor stroma and they are also responsible for the synthesis of many extracellular matrix components. Fibroblast-cancer cell interplay can modify the functions of both cell types. Methods We applied mass spectrometry and proteomics to unveil the matrisome in 3D spheroids formed by DU145 prostate cancer cells, PC3 prostate cancer cells, or prostate-derived fibroblasts. Similarly, DU145/fibroblast and PC3/fibroblast coculture spheroids were also analyzed. Western blot analysis and immunofluorescence were used to confirm the presence of specific proteins in spheroids. Cancer dissemination was studied by utilizing out of spheroids migration and invasion assays. Results In the spheroid model cancer cell-fibroblast interplay caused remarkable changes in the extracellular matrix and accelerated the invasion of DU145 cells. Fibroblasts produced structural matrix proteins, growth factors, and matrix metalloproteinases. In cancer cell/fibroblast cocultures basement membrane components, including laminins (alpha 3, alpha 5, beta 2, and beta 3), heparan sulfate proteoglycan (HSPG2 gene product), and collagen XVIII accumulated in a prominent manner when compared with spheroids that contained fibroblasts or cancer cells only. Furthermore, collagen XVIII was intensively processed to different endostatin-containing isoforms by cancer cell-derived cathepsin L. Conclusions Fibroblasts can promote carcinoma cell dissemination by several different mechanisms. Extracellular matrix and basement membrane proteins provide attachment sites for cell locomotion promoting adhesion receptors. Growth factors and metalloproteinases are known to accelerate cell invasion. In addition, cancer cell-fibroblast interplay generates biologically active fragments of basement membrane proteins, such as endostatin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据