4.8 Article

Aerosol-photolysis interaction reduces particulate matter during wintertime haze events

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1916775117

关键词

particulate pollution; aerosol-radiation interaction; aerosol-photolysis interaction

资金

  1. National Key RD Plan [2017YFC0210000]
  2. Strategic Priority Research Program of Chinese Academy of Sciences [XDB40030200]
  3. National Research Program for Key Issues in Air Pollution Control [DQGG0105]
  4. NSF [1560494]
  5. Div Atmospheric & Geospace Sciences
  6. Directorate For Geosciences [1560494] Funding Source: National Science Foundation

向作者/读者索取更多资源

Aerosol-radiation interaction (ARI) plays a significant role in the accumulation of fine particulate matter (PM2.5) by stabilizing the planetary boundary layer and thus deteriorating air quality during haze events. However, modification of photolysis by aerosol scattering or absorbing solar radiation (aerosol-photolysis interaction or API) alters the atmospheric oxidizing capacity, decreases the rate of secondary aerosol formation, and ultimately alleviates the ARI effect on PM2.5 pollution. Therefore, the synergetic effect of both ARI and API can either aggravate or even mitigate PM2.5 pollution. To test the effect, a fully coupled Weather Research and Forecasting (WRF)-Chem model has been used to simulate a heavy haze episode in North China Plain. Our results show that ARI contributes to a 7.8% increase in near-surface PM2.5. However, API suppresses secondary aerosol formation, and the combination of ARI and API results in only 4.8% net increase of PM2.5. Additionally, API increases the solar radiation reaching the surface and perturbs aerosol nucleation and activation to form cloud condensation nuclei, influencing aerosol-cloud interaction. The results suggest that API reduces PM2.5 pollution during haze events, but adds uncertainties in climate prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据