4.3 Article

A molecular dynamics-based investigation on tribological properties of functionalized graphene reinforced thermoplastic polyurethane nanocomposites

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1350650120912612

关键词

Molecular dynamics; graphene; polymer composite; sliding velocity; tribology

向作者/读者索取更多资源

The study demonstrates that adding functionalized monolayer graphene can significantly enhance the mechanical properties of thermoplastic polyurethane, especially with the addition of 3 wt.%. Additionally, under the condition of adding 3 wt.% of functionalized monolayer graphene, the coefficient of friction and abrasion rate reach their minimum values, showing varying levels of change under different sliding velocities.
Tribo-mechanical properties of pure thermoplastic polyurethane and functionalized monolayer graphene-reinforced thermoplastic polyurethane polymer nanocomposites are investigated by molecular dynamics simulations. Initially, the mechanical properties of the thermoplastic polyurethane and functionalized monolayer graphene-reinforced thermoplastic polyurethane nanocomposites are measured by applying constant stain method. Subsequently, interfacial layer models are developed to apply confined shear on the iron layers to find out the coefficient of friction and the abrasion rate of pure thermoplastic polyurethane and functionalized monolayer graphene-reinforced thermoplastic polyurethane nanocomposites. The results imply that by the incorporation of 0.5 wt.% functionalized monolayer, graphene shows the increase of 20% in Young's modulus, 15% in shear modulus and 6.66% in bulk modulus of pure thermoplastic polyurethane, respectively, which are in good agreement with the previous experimental studies. Maximum enhancement of mechanical properties can be obtained up to 3 wt.% addition of functionalized monolayer graphene addition in thermoplastic polyurethane matrix. Further, it is observed that 3 wt.% of functionalized monolayer graphene-reinforced thermoplastic polyurethane nanocomposite results in minimum coefficient of friction (0.42) and abrasion rate (19%) under constant normal load (5 kcal/mol/angstrom) and maximum sliding velocity (11 m/s). However, further reduction in minimum values of coefficient of friction and abrasion rate at 3 wt.% of functionalized monolayer graphene-reinforced thermoplastic polyurethane nanocomposites is seen under the minimum sliding velocity (1 m/s) considered with the same normal load condition. Finally, the inherent mechanisms for enhancement of tribo-mechanical properties in functionalized monolayer graphene-reinforced thermoplastic polyurethane nanocomposites are analysed by the atomic density profile, free volume and Connolly surface at the atomic level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据